본문 바로가기

광고

광고닫기

광고

본문

광고

미래&과학 과학

신기루의 비밀…이 배는 왜 공중에 떠 있는 것처럼 보일까

등록 2021-03-25 09:59수정 2021-03-26 16:04

[윤복원의 물리상식으로 푸는 요즘 세상]
실제와 다른 위치에 있는 것같은 신기루
빛이 어떻게 휘는가에 따라 형태도 다양
중력렌즈로 나타나는 천문 현상도 신기루
그림1. 왼쪽은 배가 바다 위의 하늘에 떠 있는 듯한 모습 (출처: 콜린 맥캘럼, 페이스북 포스트 갈무리) . 오른쪽은 더운 날 도로에 물이 깔려 있는 듯한 모습 (출처: 브로큰 이너글로리, 위키미디어 코먼스)
그림1. 왼쪽은 배가 바다 위의 하늘에 떠 있는 듯한 모습 (출처: 콜린 맥캘럼, 페이스북 포스트 갈무리) . 오른쪽은 더운 날 도로에 물이 깔려 있는 듯한 모습 (출처: 브로큰 이너글로리, 위키미디어 코먼스)

최근 영국에서 바다 위의 공중에 배가 떠 있는 모습이 목격되어 화제였다. 하지만 이런 크기의 배가 실제로 바다 위의 공중에 떠 있을 가능성은 사실상 없다. 이렇게 보이기는 하지만 보이는 위치에 실체가 없는 현상을 ‘신기루’라고 부른다. 더운 날 고속도로를 운전할 때 멀리 보이는 도로에 마치 물이 깔려 있어 주변 풍경이 이 물에 비치는 것처럼 보이는 경우가 있다. 이것도 일종의 신기루다. 왜 이런 현상이 일어날까? 빛이 물질의 경계면에서 꺾이거나 휘기 때문에 나타나는 현상이다.

_______
신기루가 만들어지는 원리

아무것도 없는 진공에서 빛은 초속 30만km로 가장 빨리 날아간다. 공기 중에서는 빛 속도가 이보다는 아주 약간 느리다. 물속에서는 빛 속도가 25% 느려져 초속 22만5000km고, 유리 속에서는 33% 정도 느려져 초속 20만km다. 빛의 속도가 다른 두 물질이 만나는 경계면에서는 빛이 꺾인다. 이를 스넬의 법칙(Snell’s law)이라고 부른다. 예를 들면 물과 공기의 경계면인 물표면 이나 유리와 공기의 경계면인 유리표면에서 빛이 꺾인다. 빛이 꺾이는 현상을 확인하는 간단한 실험이 있다.

똑같은 컵 두 개를 준비하고, 각각의 컵에 동전을 넣는다. 한 컵은 그대로 두고, 다른 한 컵에는 물을 가득 채운다. 위에서 내려다보면 두 컵 모두 컵 속의 동전이 보인다. (‘그림2’의 위 사진) 보는 위치를 컵 위에서 컵 옆으로 조금씩 바꾸면, 물이 없는 컵부터 컵 테두리가 동전을 가리기 시작한다. 그러다 물이 없는 컵의 동전은 컵 테두리에 완전히 가려 안보이고, 물이 찬 컵의 동전은 보이는 각도를 찾을 수 있다. (‘그림2’의 가운데 사진)

물이 없는 컵에서는 컵 바닥의 동전에서 시작되어 눈까지 가는 빛이 같은 공기로만 지나가기 때문에 일직선이다. ‘그림2’ 가운데 사진처럼 보면 왼쪽 컵의 경우는 동전에서 눈으로 향하는 빛의 경로가 컵 테두리로 다 막혀 있어서 동전을 볼 수 없다. 반면, 물이 찬 컵의 경우는 같은 각도로 봐도 동전이 보인다. 동전에서 눈까지 오는 빛의 경로를 보면, 물속에서는 좀 더 위 방향으로 빛이 지나가다 물 표면에서 빛이 꺾여 눈으로 향한다. (‘그림2’ 아래 오른쪽 그림의 파란색 실선) 동전으로부터의 빛이 테두리를 피해 우회하면서 빛이 눈에 닿아 보이는 것이다. 물이 없으면 안 보여야 하는데 보이는 것이어서, 마치 동전이 물속 중간에 떠 있는 것처럼 보인다. 하지만 실제 동전은 컵 바닥에 있으므로, 동전이 보이는 위치에는 동전이 없다. 있으면 안될 곳에 있는 것처럼 보이는 것이다. ‘그림2’ 가운데 사진의 물이 없는 왼쪽 컵과 물이 찬 오른쪽 컵을 비교해 보면, 물이 찬 컵의 바닥과 동전이 마치 컵 중간에 있는 것처럼 보인다.

그림 2. 맨 위 : 오른쪽 컵에는 물이 없이 동전을 넣고, 왼쪽 컵에는 물을 채우고 동전을 넣었다. 가운데 : 적당한 각도로 옆에서 보자, 물이 없는 컵의 동전은 보이지 않고 물이 찬 컵에 있는 동전만 보인다. 물이 없는 컵은 컵 테두리가 가려 동전이 보이지 않지만, 물이 찬 컵에서는 물 표면에서 빛이 꺾여 컵 테두리를 우회해서 눈에 도달하기 때문이다. 왼쪽의 물 없는 컵과 비교하면 동전이 마치 컵 중간에 있는 듯이 보인다. 아래 : 물 없는 컵과 물이 찬 컵을 볼 때 빛의 경로를 표시한 그림. 푸른 실선은 빛의 진행 방향을 표시하고, 빨간 점선은 뇌가 인식하는 동전의 보이는 위치를 가리킨다.
그림 2. 맨 위 : 오른쪽 컵에는 물이 없이 동전을 넣고, 왼쪽 컵에는 물을 채우고 동전을 넣었다. 가운데 : 적당한 각도로 옆에서 보자, 물이 없는 컵의 동전은 보이지 않고 물이 찬 컵에 있는 동전만 보인다. 물이 없는 컵은 컵 테두리가 가려 동전이 보이지 않지만, 물이 찬 컵에서는 물 표면에서 빛이 꺾여 컵 테두리를 우회해서 눈에 도달하기 때문이다. 왼쪽의 물 없는 컵과 비교하면 동전이 마치 컵 중간에 있는 듯이 보인다. 아래 : 물 없는 컵과 물이 찬 컵을 볼 때 빛의 경로를 표시한 그림. 푸른 실선은 빛의 진행 방향을 표시하고, 빨간 점선은 뇌가 인식하는 동전의 보이는 위치를 가리킨다.

배가 바다 위 공중에 떠 있는 것처럼 보이는 것도 비슷한 현상이다. 이런 현상이 나타나려면 물이 찬 컵처럼 빛의 속도가 상대적으로 느린 물질이 아래에 있고, 빛의 속도가 상대적으로 빠른 물질이 위에 있어야 한다. 물이 찬 컵 속의 동전을 보는 것과 다른 점은 공기로만 빛의 속도가 다른 층이 있어야 한다는 점이다. 배가 물속에 잠겨 있지 않고 떠 있기 때문이다. 다시 말해 빛 속도가 느린 공기층이 아래에 있고 빛 속도가 빠른 공기층이 위에 있어야 한다.

기압이 높고 공기가 차가우면 공기의 밀도가 높아지면서 빛의 속도도 약간 더 느려진다. 반대로 기압이 낮고 공기가 따뜻하면 공기의 밀도가 낮아지면서 빛의 속도는 약간 더 빨라져 진공에서의 빛 속도와 더 가까워진다. 따라서 차가운 공기가 기압이 높은 아래에 깔리고 더운 공기가 기압이 낮은 위에 있으면, 물이 채워진 컵과 유사한 상황이 만들어진다. 멀리 있는 배가 실제로 있는 위치보다 더 높은 위치에 보일 수 있는 조건이 만들어지는 것이다. 이런 조건에서 실제보다 위에 있는 것처럼 보이는 현상을 ‘위 신기루’(superior mirage)라고 부른다. 하지만 ‘위 신기루’ 현상이 나타나는 기상 조건은 흔하지 않다.

물표면에서는 물질이 물에서 공기로 급격히 변하기 때문에, 빛이 꺾이는 방식으로 빛의 방향이 물 표면에서 급격히 변한다. 하지만 두 공기층이 만나는 영역에서는 공기의 밀도가 급격히 변하지 않고 상대적으로 서서히 변한다. 이로 인해 빛의 방향도 서서히 변하기 때문에 빛이 휜다고 보는 것이 적절하다.

반대로 충분히 뜨거운 공기가 아래에 깔리면 빛이 휘는 방향이 반대가 될 수 있다. 더 아래에 있는 것처럼 보일 수 있다. 이런 상황은 의외로 쉽게 접할 수 있다. 무더운 날 도로를 자동차로 달릴 때 도로의 먼 부분에 물이 깔린 것처럼 보이는 것이 그 경우다. 도로의 열기가 도로 위의 공기를 데워 뜨거운 공기층이 도로 바로 위에 만들어질 때 일어나는 현상이다. 충분히 뜨거운 공기가 아래에 깔려 있고 상대적으로 차가운 공기가 위에 있는 이 상황에서는 도로 위의 풍경이 실제 위치보다 아래인 도로에 보인다. 마치 도로 위에 물이 있고 도로 위의 풍경이 그 위에 비치는 것처럼 보인다. 이렇게 실제보다 아래에 보이는 현상을 ‘아래 신기루’(inferior mirage)라고 부른다.

그림 3. 프리즘으로 ‘위 신기루’와 ‘아래 신기루’를 동시에 흉내 내기 : 프리즘 한 면의 가운데가 글자 ‘Y’ 위에 위치하도록 프리즘을 올려놓고 프리즘의 나머지 두 면을 위에서 내려다본다. 글자 하나가 프리즘 각 면에 하나씩 원래 있어야 할 위치가 아닌 위치에 있는 것처럼 보인다. 빛 속도가 느린 유리가 공기 위에 위치하는 프리즘의 한 면에서는 물체가 실제보다 더 위에 보이는 ‘위 신기루’ (superior mirage) 현상이 만들어지고, 빛 속도가 느린 유리가 공기 아래에 위치하는 프리즘의 다른 면에서는 물체가 실제보다 더 아래에 보이는 ‘아래 신기루’ (inferior mirage) 현상이 만들어진다. 빛은 공기와 유리의 경계면인 프리즘 표면에서 꺾인다. 아래 그림에서 푸른 실선은 빛의 진행 방향을 표시하고, 빨간 점선은 뇌가 인식하는 글자의 보이는 위치를 가리킨다.
그림 3. 프리즘으로 ‘위 신기루’와 ‘아래 신기루’를 동시에 흉내 내기 : 프리즘 한 면의 가운데가 글자 ‘Y’ 위에 위치하도록 프리즘을 올려놓고 프리즘의 나머지 두 면을 위에서 내려다본다. 글자 하나가 프리즘 각 면에 하나씩 원래 있어야 할 위치가 아닌 위치에 있는 것처럼 보인다. 빛 속도가 느린 유리가 공기 위에 위치하는 프리즘의 한 면에서는 물체가 실제보다 더 위에 보이는 ‘위 신기루’ (superior mirage) 현상이 만들어지고, 빛 속도가 느린 유리가 공기 아래에 위치하는 프리즘의 다른 면에서는 물체가 실제보다 더 아래에 보이는 ‘아래 신기루’ (inferior mirage) 현상이 만들어진다. 빛은 공기와 유리의 경계면인 프리즘 표면에서 꺾인다. 아래 그림에서 푸른 실선은 빛의 진행 방향을 표시하고, 빨간 점선은 뇌가 인식하는 글자의 보이는 위치를 가리킨다.

프리즘을 이용하면 위에 설명한 두 종류의 신기루를 동시에 흉내 낼 수 있다. 종이 위에 조그만 글자를 하나 쓰고, 글자가 프리즘 한 면의 가운데에 오도록 프리즘을 종이 위에 올려놓는다. 그리고 프리즘의 다른 두 면이 만드는 꼭지를 향해 내려다본다. 그러면 프리즘 밑에 있는 글자는 하나임에도 불구하고, 프리즘의 두개의 면 각각에 하나씩 두개의 글자가 보인다. 프리즘 윗면에 보이는 글자는 그림의 실제 위치보다 위에 있는 것처럼 보이고, 프리즘 아랫면에 보이는 글자는 그림의 실제 위치보다 아래에 있는 것처럼 보인다. 각각 ‘위 신기루’와 ‘아래 신기루’를 흉내 낸 것이다.

‘그림3’의 아래 그림에서 볼 수 있듯이, 글자가 위에 보일 때는 빛 속도가 느려지는 프리즘의 유리가 공기의 아래에 위치한다. 이 경우에 글자에서 눈까지 오는 빛의 경로는 처음에는 위로 가다가 프리즘 유리표면에서 아래로 꺾이는 것을 볼 수 있다. ‘위 신기루’가 만들어질 때의 전형적인 빛의 경로 모양이다. 글자가 아래에 보일 때는 프리즘의 유리가 공기의 위에 위치한다. 이 경우에는 빛이 아래로 향하다가 위로 꺾인다. ‘아래 신기루’가 만들어질 때의 빛의 경로 모양이다.

_______
중력렌즈로 만들어지는 신기루

빛의 속도가 변하지 않아도 빛이 날아가는 방향이 변하는 상황이 있다. 중력이 있을 때가 그렇다. 아인슈타인의 일반상대성이론에 의하면 중력이 없는 곳에서는 빛이 일직선으로 날아가지만, 중력이 있으면 중력이 끌어당기는 방향으로 빛이 휜다. 공기와 물 또는 공기와 유리 경계면에서는 빛 속도가 변하기 때문에 빛이 꺾이거나 휘지만, 중력의 영향을 받을 때는 시공간이 휘기 때문에 빛이 휜다는 것이 다른 점이다.

중력으로 빛이 휘는 것을 처음으로 관측한 때는 1919년 5월29일 개기일식 때다. 개기일식 순간 태양에 살짝 가려 보이지 않았어야 할 별을 관측함으로써 태양 중력이 빛을 휘게 한다는 사실을 확인했다. 관측자 중 한 사람의 이름을 따서 이 관측을 '에딩턴 실험'이라고 부른다.

이후 천문 관측 기술이 발전하면서 중력에 빛이 휘기 때문에 나타나는 특별한 천문 현상들이 관측됐다. 그중 하나가 ‘그림4’의 왼쪽 위 사진에서 볼 수 있는 ‘아인슈타인 고리’(Einstein ring)다. 실제로는 이런 모양의 천체가 이런 규모로 존재하지 않는다. 중간에 다른 천체가 있어 그 천체의 중력으로 인해 빛이 휘면서 나타나는 현상이다. 실제와는 다른 위치에서 다른 모양으로 보이는 일종의 신기루다. 마치 중력이 렌즈 역할을 한다고 해서 중력렌즈라고도 부른다. 유리로 만든 공을 이용하면 아인슈타인 고리를 중력이 없이도 흉내 낼 수 있다. ‘그림4’의 왼쪽 아래 사진에서처럼, 유리공을 조그만 검은 동그라미 위에 적당히 떨어뜨려 놓고 보면 동그란 고리 모양이 추가로 만들어지는 것을 볼 수 있다. 고리 모양은 점으로부터 시작된 빛이 유리공을 통과하는 동안 빛의 방향이 꺾이면서 모양이 변한 이미지다.

그림 4. 중력렌즈를 포착한 천문 사진과, 이를 유리공과 유리피라미드로 흉내 낸 사진. 왼쪽 위: 중간에 있는 은하계가 중력렌즈로 작용해 뒤에 있는 은하계가 고리처럼 보인다. ‘아인슈타인 고리’라고 부른다(출처: ESA, NASA). 왼쪽 아래: 유리공을 점 위에 조금 떨어뜨려 놓고 본 사진, 한 점이 또 다른 고리 모양의 이미지를 만든다. 오른쪽 위: 하나의 퀘이사(quasar)가 중력렌즈의 영향으로 4개의 퀘이사로 보인다. 십자가 모양이어서 ‘아인슈타인 십자가’라고 부른다. 오른쪽 아래: 유리 피라미드를 점 하나 위에 놓고 보면 피라미드에 있는 4개의 면 각각에 점 하나씩 모두 4개의 점이 보인다.
그림 4. 중력렌즈를 포착한 천문 사진과, 이를 유리공과 유리피라미드로 흉내 낸 사진. 왼쪽 위: 중간에 있는 은하계가 중력렌즈로 작용해 뒤에 있는 은하계가 고리처럼 보인다. ‘아인슈타인 고리’라고 부른다(출처: ESA, NASA). 왼쪽 아래: 유리공을 점 위에 조금 떨어뜨려 놓고 본 사진, 한 점이 또 다른 고리 모양의 이미지를 만든다. 오른쪽 위: 하나의 퀘이사(quasar)가 중력렌즈의 영향으로 4개의 퀘이사로 보인다. 십자가 모양이어서 ‘아인슈타인 십자가’라고 부른다. 오른쪽 아래: 유리 피라미드를 점 하나 위에 놓고 보면 피라미드에 있는 4개의 면 각각에 점 하나씩 모두 4개의 점이 보인다.

‘그림4’의 오른쪽 위 사진과 같이 마치 별 4개가 위·아래와 양옆으로 보이는 경우도 있다. 하지만 이 4개의 별은 하나의 퀘이사(quasar)에서 나오는 빛이다. 퀘이사는 아주 먼 거리에 있는 엄청나게 큰 블랙홀로 주변 물질을 빨아들이면서 강한 빛을 내보내는 천체다. 퀘이사와 지구 사이에 있는 제3의 천체가 끌어당기는 중력으로 인해 퀘이사 빛이 휘면서 하나의 퀘이사 빛이 4개의 다른 빛처럼 보인다. 십자가 모양처럼 보여서 ‘아인슈타인 십자가’(Einstein cross)로도 불린다. 아인슈타인 십자가도 유리로 만든 피라미드로 흉내 낼 수 있다. 유리 피라미드를 점 위에 올려놓고 보면 ‘그림4’의 오른쪽 아래 사진처럼 점 하나가 4개의 점으로 보인다.

그림 5. 위 : 가까이에서 보는 블랙홀의 가상 영상. 원래 토성의 고리 모양과 비슷한 블랙홀의 고리 모양이 다른 모습으로 보인다. 블랙홀 앞부분의 고리는 거의 그대로 보이지만, 블랙홀 뒷부분의 고리는 위아래 양쪽으로 꺾여 두개의 반원 모양으로 보인다(출처: NASA). 아래 : 직선 위에 유리공을 약간 떨어뜨려 놓고 보는 사진. 직선 하나가 위아래 두개의 반원 모양 고리로 보인다. 유리공은 가운데로도 빛이 통과하기 때문에 가운데에 직선 모양도 같이 보이지만, 블랙홀은 가운데의 블랙홀이 빛을 다 빨아들이기 때문에 아래 사진에서와 같은 가운데 직선은 보이지 않는다.
그림 5. 위 : 가까이에서 보는 블랙홀의 가상 영상. 원래 토성의 고리 모양과 비슷한 블랙홀의 고리 모양이 다른 모습으로 보인다. 블랙홀 앞부분의 고리는 거의 그대로 보이지만, 블랙홀 뒷부분의 고리는 위아래 양쪽으로 꺾여 두개의 반원 모양으로 보인다(출처: NASA). 아래 : 직선 위에 유리공을 약간 떨어뜨려 놓고 보는 사진. 직선 하나가 위아래 두개의 반원 모양 고리로 보인다. 유리공은 가운데로도 빛이 통과하기 때문에 가운데에 직선 모양도 같이 보이지만, 블랙홀은 가운데의 블랙홀이 빛을 다 빨아들이기 때문에 아래 사진에서와 같은 가운데 직선은 보이지 않는다.

영화 인터스텔라에는 블랙홀을 가까이에서 볼 때의 모습이 나온다. 블랙홀 주위로 빛나는 고리는 원래 토성의 고리와 비슷한 모양이지만, 가운데 블랙홀이 중력렌즈로 작용해 ‘그림5’의 윗그림처럼 보인다는 설정이다. 실제로 관측한 영상은 아니고, 여러 과학 원리를 기반으로 만든 가상의 영상이다. 블랙홀 앞부분의 고리는 원래의 모양 거의 그대로 보인다. 블랙홀이 앞고리의 뒤에 있어, 증력렌즈로 작용하는 영향이 크지 않기 때문이다. 하지만 블랙홀 뒷부분의 고리는 완전히 다르게 보인다. 그 앞에 있는 블랙홀이 중력렌즈로 작용해, 뒷고리가 위로도 꺾여 보이고 아래로도 꺾여 보인다. 마치 두개의 고리가 블랙홀 위아래로 만들어진 것처럼 보인다. 위에 보이는 고리는 ‘위 신기루’, 아래에 보이는 고리는 ‘아래 신기루’에 해당한다.

이와 유사한 상황도 유리공으로 흉내 낼 수 있다. ‘그림5’의 아래 사진은 일직선 위에 유리공을 적당한 거리로 떨어뜨려 놓고 보는 장면이다. 직선의 위로 굽은 반원 하나와 아래로 굽은 반원 두개로 보인다. 블랙홀 가상 영상에서 뒷부분의 고리가 위와 아래의 반원으로 보이는 것과 상당한 유사하다. 유리공은 가운데로도 빛이 통과하기 때문에 가운데에도 직선 모양이 보이지만, 블랙홀 중심에서는 빛을 다 흡수하기 때문에 아무것도 보이지 않는다는 것이 다른 점이다.

윤복원/미국 조지아공대 연구원(전산재료과학센터·물리학)

bwyoon@gmail.com
항상 시민과 함께하겠습니다. 한겨레 구독신청 하기
언론 자유를 위해, 국민의 알 권리를 위해
한겨레 저널리즘을 후원해주세요

광고

광고

광고

미래&과학 많이 보는 기사

커피 애호가 몸엔 이 박테리아 8배 많아…카페인 때문은 아니다 1.

커피 애호가 몸엔 이 박테리아 8배 많아…카페인 때문은 아니다

박테리아 꽃부터 유성우 쇼까지…네이처가 뽑은 올해의 과학사진 2.

박테리아 꽃부터 유성우 쇼까지…네이처가 뽑은 올해의 과학사진

초속 1600km 중성자별이 그린 ‘기타 성운’ 3.

초속 1600km 중성자별이 그린 ‘기타 성운’

지구는 진짜로 우리의 유일한 우주선이다 [.txt] 4.

지구는 진짜로 우리의 유일한 우주선이다 [.txt]

숙취 두통 일으키는 핵심 원인 찾았다 5.

숙취 두통 일으키는 핵심 원인 찾았다

한겨레와 친구하기

1/ 2/ 3


서비스 전체보기

전체
정치
사회
전국
경제
국제
문화
스포츠
미래과학
애니멀피플
기후변화&
휴심정
오피니언
만화 | ESC | 한겨레S | 연재 | 이슈 | 함께하는교육 | HERI 이슈 | 서울&
포토
한겨레TV
뉴스서비스
매거진

맨위로
뉴스레터, 올해 가장 잘한 일 구독신청